(X+20)(x-40)=2700^2

Simple and best practice solution for (X+20)(x-40)=2700^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+20)(x-40)=2700^2 equation:



(X+20)(X-40)=2700^2
We move all terms to the left:
(X+20)(X-40)-(2700^2)=0
We add all the numbers together, and all the variables
(X+20)(X-40)-7290000=0
We multiply parentheses ..
(+X^2-40X+20X-800)-7290000=0
We get rid of parentheses
X^2-40X+20X-800-7290000=0
We add all the numbers together, and all the variables
X^2-20X-7290800=0
a = 1; b = -20; c = -7290800;
Δ = b2-4ac
Δ = -202-4·1·(-7290800)
Δ = 29163600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29163600}=\sqrt{3600*8101}=\sqrt{3600}*\sqrt{8101}=60\sqrt{8101}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-60\sqrt{8101}}{2*1}=\frac{20-60\sqrt{8101}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+60\sqrt{8101}}{2*1}=\frac{20+60\sqrt{8101}}{2} $

See similar equations:

| 31=m-19 | | 2^x2/2^x=64 | | 10t+8+4t=58 | | f/8-(-20)=23 | | 89=327-z | | 12z^2=17z^2+20 | | 12+4x-4=2(2x+1) | | -8+10r=-4 | | 2z/7+8=-7 | | 7z-1=6z+4 | | 73=28+q | | 7z÷2+(-1÷2)=3z+2 | | -8x-2=-6 | | X(x-2)+12=x(x+14) | | x/10-3=10 | | r/7+5=10 | | 95=25+k | | z/7+5=7 | | S=2v+F | | 2(3a+5)=2a+54 | | 8(4p+1=32p+8 | | 38=33-d | | 8x=8-2(5x-9) | | 26=-5+v | | 5+2x=7x-15 | | 11/4a=77/4 | | 8+2m=5m-40 | | -15-2x+2x=1+6x | | 5x-7=-6x-2 | | 8j+14=-8j+14 | | 4/7=k/5 | | y/9=y-7/12 |

Equations solver categories